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For certain long transform lengths, Winograd’s algorithm for computing the discrete
Fourier transform (DFT) is extended considerably. This is accomplished by performing
the cyclic convolution, required by Winograd'’s method, with the Mersenne-prime
number-theoretic transform developed originally by Rader. This new algorithm requires
fewer multiplications than either the standard fast Fourier transform (FFT) or Winograd's

more conventional algorithm.

l. Introduction

Several authors (Refs. 1 through 13) have shown that
transforms over finite fields or rings can be used to compute
circular convolutions without round-off error. Recently,
Winograd (Ref. 14) developed a new class of algorithms which
depend heavily on the computation of a cyclic convolution for
computing the conventional DFT. This new algorithm, for a
few hundred transform points, requires substantially fewer
multiplications than the conventional FFT algorithm.

C. M. Rader (Ref. 3) defined a special class of finite
Fourier-like transforms over GF(g), where ¢ =27 -1 is a
Mersenne prime for p= 2,3,5,7,13,17,19,31,61 - - - These
number-theoretic transforms are used and specialized here to
transform lengths of p points. The advantage of this transform
over others is that it can be accomplished simply by circular
shifts, i.e., no multiplications are needed (Ref. 3).

In this paper, it is shown that Winograd’s algorithm can be
combined with the above-mentioned number-theoretic trans-
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form over GF(q) to yield a new algorithm for computing the
discrete Fourier transform (DFT). By this means, a fast
method for accurately computing the DFT of a sequence of
real and complex numbers of very long transform lengths is
obtained.

Il. Cyclic Convolution

The following algorithm for the cyclic convolution of two
sequences is based on ideas due to Winograd (Ref. 14). Let R
be the field of rationals. Also let X(u) =x, +x,u +x,u? +- -
+xu" L Y(u)=yo + yu+ yu -+ u" 1 be two
polynomials over R. The product T(u) = X(u) < Y(u) can be
computed by

m-2
Tu)=Xw)+ Yw)mod J] (-a) (€))

i=0



where a.€eR. It is shown in (Ref. 14) that a minimum of 27 - 1
multiplications are needed to compute Eq. (1).

It is readily shown that the cyclic convolution of X(u) and
Y(u) is the set of coefficients of the polynomial,

T@)=Xw) - Y(w)mod (u" - 1)

Let the polynomial 4" - 1 be factored into irreducible
relatively prime factors, i.e.,

K
- 1= JT g

=1

where
(8,(w), &) # 1 fori#]

Then T(u) mod giu) for i = 1,2, -+, k can be computed,
using Eq. (1). Finally, the Chinese remainder theorem is used
to evaluate T(u) from these residues. The above summarizes
Winograd’s method for performing a cyclic convolution.

The following theorem, due to Winograd (Ref. 15), will be
needed.

Theorem 1: Let ¢ and b be relatively prime positive
integers and A be the cyclic ab X ab matrix, given by

Alx,y)=f(x+ymoda-b),0<xy<ab

If 7 is a permutation of the set of integers {0,1,-- -, ab -1},
let

B(x, y) = A(n(x), m(y))

Then there exists a permutation 7 such that, if B is partitioned
into b X b submatrices, each submatrix is cyclic and the
submatrices form an a X a cyclic matrix.

It was shown in (Refs. 15 and 16) that the number of
multiplications needed to perform a circular convolution of
23,456, and 8 points is 2,4,5,10,8, and 14 multiplications,
respectively. To compute the cyclic convolution of two longer
sequences of integers, a p-point transform over GF(g) will be
utilized here. Since the latter transform can be evaluated
without multiplications (Ref. 3), it can be used with consider-
able advantage to compute the cyclic convolution of two

p-point real number sequences. Hence, for the transform over
GF(g), the number of integer multiplications needed to
perform a circular convolution is precisely p, excluding the
multiplications by p~! in the inverse transform.

Ill. The DFT When the Transform Length d
isaPrimed=¢q’

The DFT is defined by
d-1
A]. = Z aw’
i=0

where w is a d-th root of unity. Let

d-1

4,= 2 g (2a)

and
A].=a0+B]. for j=1,2,---,d-1

where

d-1

= if
B]. ; aw

That is, let

B=Wa (2b)

where W is the (d - 1) X (d - 1) matrix (w"), and @, B are the
column matrices (a,) and (B, ). respectively. If d=¢' is a
prime, then by (Ref. 13), one can find an element « in GF(g")
that generates its cytlic multiplicative subgroup of ¢’ - 1
elements. Using the element o, a cyclic permutation of the
elements of GF(q") can be defined by

L2, , 4 -2,4-1
o=( (2¢)

@ o?, -l "2 qd !
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With this permutation, one can permute the ind'ices.of—B, a, W
defined in Eq. (2b) so that the matrix W = (’w"(’)"(]))i #0018
cyclic. That is,

q'-1
_ 510 ()
Bogy™ 22 %™

= Z aa(l.)wo(i+f) for j=1,2,--,q" - 1 (3)

=1

'ghus, Bo(j) ils a cyclic convolution ofaa(i) and w®® for j=1,
s o v , ql — A

Let ¢' - L=p, " Py P, where @, p].) =1 fori#j. If
one lets a, =p, Py, P, and b1 =p,. by Theorem 1 the
cyclic matrix W can be partitioned into bf = pf cyclic matrices
each of block size a, X a;. Next let ¢, = a, X b,, where g, =
p, P,_, and by, = p, ;. If a, is not a prime, then each
a, X a, cyclic matrix can be partitioned into b% cyclic
matrices of block size a, X a,. In general, a; = a;,; * by q,
where bi2+1 is a prime. If a4, #* 1, then each a; X a; cyclic
matrix can be partitioned into bfﬂ cyclic matrices of block
size a,,; X a,, . Otherwise, the procedure terminates. If the
number of multiplications used to compute the cyclic con-

volution of p, points is m; fori=1,2,---,r, then Winograd
has shown in Ref. 14 that the number of multiplications for

computing a ¢"-point DFT isequal toN=m  ~m, -+ -m,_.

For most applications, the two Mersenne primes 231 -
and 26! - 1 will provide enough bit accuracy and dynamic
range for computing the DFT. For these primes, we choose the
prime ¢’ to have the form

g=1+@-2"+p forn=1273

where p =31 or 61 ande =3 or 5. Such values for the prime q
are 367,373,733, 1831, 1861, and 2441,

If d = ¢ is the transform length of the DFT, then, by
Theorem 1, there exists a permutation of rows and columns so
that cyclic matrix W can be partitioned into blocks of p X p
cyclic matrices, such that the blocks from a (2" + @) X (2" * a)
cyclic matrix. This cyclic matrix can be reduced further by
Winograd’s method. First ¢'-1 = 2" -a+p is an even
number, and w2”+ep =w”! where w is the d-th root of unity
in the field of complex numbers. For such a case, Winograd
showed that the elements in the p X p cyclic matrices finally
required by the transform are either all real or imaginary
numbers. To show this, consider the case » = 1. For this case,
g - 1=2+a+ p. The permutation in Eq. (2¢) is given by

1,2--ap-l,ap,ap+1:--2ap

a, o - ,aap—l’aap’ Pt alep

where « is a generator of the multiplicative subgroup consisting of q' - 1="2ap elements in GF(q'). Applying the above permuta-

tion to Eq. (2b) and using the fact that o#? = -1 mod ¢, one obtains the cyclic matrix equation in terms of w as follows:
B T 2 3 4 2 a0 ]
o (] (<] -1, ,-a -~ Cwl W
ba(l) whowtow w w wow Bg(1)
3 4 2 2
o (3 -1, —a -~ 1,0 .0
bo’(Z) w* Wt oeeew T w T w wiwew 252)
- )
12
o Q -1 ,,~a 1
Lb0(2ap) woowe wow w ua(2ap)
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= - . - = wal = a2 ... = =1 ... = =
Let Yo = by1y ¥ =bo@y s Paap-1 = boaapy Xo = W, X = waet, »Xgp T W Y »X2ap =wl, ¥, SqayM
=452 Yaap-1 = o (2ap)- Then Eq. (4) becomes

— -
%o X X X2 X, % Yo
? Yoo X3 o Xppa T Xg X
| | )
“Dm—2 xm xO xl T xm/2—1 U xm—l
‘pm—l Xo xl x2 xm /2 xm ym—l
N et — — — d

where m = 2ap.

By Theorem 1, the above cyclic 2 X gp matrix equation can be partitioned into blocks of ap X ap cyclic matrices, so that
the blocks form a 2 X 2 cyclic matrix. To illustrate this, note first that 2 and a « p are relatively prime. Thus, the Chinese
remainder theorem, an isomorphism

k> (k, k)

exists betwen an integer & modulo m and the pairs of integers k, and k, modulo 2 and a * p, respectively. This relationship
between k and (k,, k,) is

- -1 -1
k= klM1 + k2M2 mod m

where Ml"l and M2“1 satisfy the congruences g - le'1 =1 mod 2 and 2M2_1 =1 mod a - p, respectively.

Let the variables y, = Yy, kp)r Xk = X(ky, ky) a0d @ =9 k,) be rearranged in such a manner that when the first
component k& of the index pair (k,, k,) is 0, component k, is in ascending order, and when component k; is set to 1,
component k, also is in ascending order. The variables X(k,, ko) for Eq. (5) are then rearranged in the order

Y©0.0 *0,1y *0,2y " Fo,ap-1y ¥1,0y Yy Y2y X ap-1)
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If such-a rearrangement is made also on the variables y,,x,, and ¢, respectively, the cyclic convolution of Eq. (5) has the

form

90,0)

$0.1)

kp(O,ap—l)

“(1,0)

Y(1,ap-1)

Observe that the matrix Eq. (6) can be further reduced to block form as follows

where
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0.0) _1

®0,1)

P ,ap-1)

“1,0)

“a,1)

XaayXa,2y X a,0y *0,1)%0,2) X0,0)

X1,ap-1Y(1,0) " *@.ap-2Y(0.ap-1)7 (0,00~ F(0,ap-2)

a0 *an T ¥aep-1%0,0) Xy *0.ap-1)

Xo0,1) *©.2) Yoo Fany fa2) T *ao

X 0.ap-1°(0,0) " *(0.ap-2Y(1,ap-1Y° 1,00 F(1.ap-2)
00 o Fom-vFao Fan

*(1,ap-1)
—

.

| Pa.ap-1)_|

_
Y ©0,0) ]
Yo,1)

(6)
y(O,ap—l)
Ya,0)
y(l,ap—l)

(7



Y0,0) Y,0)
Y@.,1) Ya,n

v, = .Y, =
Y(©,ap-1) Y1,ap-1)
g p— - —

— -
Ya.n a2y T *a,0)
A =
Y,ap-1"1,0) T X (1,ap-2)
 Fao Fan T Taap-)
and
[ . . =
*Yo,1)  Y,2) " %0,0)
B =
*(0,ap-1Y%(0,0) " ¥(0,ap-2)
_x(o,O) Xo,1y x(O,ap—l)_
Since

QOap LD (0

X0.ap-1) = W w
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then

A, D+a1) (0, j1)  (1,0)5(1, j+1)
X, =W =we s ]

(1,7+1) ©,N+(1,1)
—a — -
w - %0, 7

for j=0,1,---, ap - 1 where * denotes complex conjugation. Thus, in (7), the cyclic matrix A is the complex conjugate of
the cyclic matrix B, i.e.,

A=B (8)
The matrix Eq. (7) can be obtained by computing the set of coefficients of
Tw) = (B + Au) - (v, +y,u) mod (22 - 1) ©)

where 42 - 1 =(u - 1)(u + 1) and u - 1 and u + 1 are relatively prime polynomials.

Taking the congruences of T(«) in Eq. (9) modulo u -~ 1 and u + 1, respectively,
Tl(u)E(B+A)-(y2+y1)modu— 1 (10a)
and
Tz(u)E(B—A)- o, —yl)modu+ 1 (10b)
By the Chinese remainder theorem, T{u) can be reconstituted from Egs. (10a) and (10b) as follows:
Tw)=2"[B+A) - (v, +y,) - B- A, - »,)

H(BHA) - (y ty) (B A -, -y ) ul

=x, tx, u
This is reexpressed in matrix form as
X, B+A) -, +y)+(A-B)-(,-»))
= (11)
X, (A+B)- (v, +¥)-(A-B)- (v, - ¥)
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By Eq. (8), the elements of the cyclic matrices (B + A) and (A - B) in Eq. (11) are evidently real and imaginary numbers.
Since (a,p) =1, again by Theorem 1, the cyclic matrices (B + A) and (A - B) can be partitioned into blocks of p X p cyclic
matrices such that the blocks are @ X a cyclic matrices. Thus, the elements of these p X p cyclic matrix blocks are either real
numbers or imaginary numbers, never complex numbers. Hence, if the input datum is real, then a multiplication by an
element in such a p X p cyclic matrix requires only one real multiplication. If the input datum is a complex number, then a
multiplication by an element in such a p X p cyclic matrix requires two real multiplications.

Using a procedure precisely similar to that used above for n =1, it can be shown that the elements in the required p X p
cyclic matrices of the 2" - ap cyclic matrix for n =2, 3 are also either real numbers or imaginary numbers. It was pointed out
in the last section that a transform of length p over GF(q) can be used to compute the cyclic convolution of p real number
points. The number of multiplications needed to perform this convolution is p. If one combines this with the number of
multiplications needed for Winograd’s algorithm for the prime ¢’, the total number of multiplications required to perform a
DFT of d = g’ real or complex number points can be computed. The results are shown in Table 1.

It has been shown that Winograd’s algorithm can be combined with a transform over GF(q) to yield a new rather fast
hybrid algorithm for computing the DFT of real and complex values. In this algorithm, it is necessary to compute the cyclic
convolution of p real number points. This cyclic convolution of two p-point sequences of real number points is given by

p-1
=2 €fgny fOrk=012, p-1 (12)
n=0
where ¢, ,e,,f,€ GF(q) and (k ~ n) denotes the residue of k - » mod p. To compute this convolution, the components of the

truncated real number e, and f,, must be converted first to integers 4, and b, with dynamic ranges, 4 and B, respectively. In
Refs. 6 and 9, it was shown that a sufficient dynamic range constraint for 4 and B is

a<41 (13a)

If A = B, Eq. (13a) reduces to

A< a-1 (13b)
where [x] denotes the greatest integer less than x.

If the circular convolution of 4, and b, is denoted by c}c for k=0,1,2,---,p- 1, then, using the procedure described in
the example of Ref. 7, ¢j can be obtained by using fast transforms over GF(q). ¢, in Eq. (12) can be obtained by scaling
back ¢, to the scale of the original real numbers for £ =0,1,2,- -+, p - 1. Evidently, the only error made in this computation
of c;( is the truncation error.

The dynamic range constraint, A, of the input sequence given in Eq. (13b) is generally very pessimistic. It was shown in
Ref. 17 that for integer convolutions, one can lessen the severity of the dynamic range constraint (13) and still maintain ¢ in
the interval (g - 1)/2 with a small probability of overflow.

To illustrate this new hybrid algorithm, consider the following example.
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Example: Consider the DFT for d = 7 points. Let the input function be defined by

a =1 for n=0,2

0 for n=1,3,4,5,6

By Eq. (2a), this transform is

6
A, =D, a,=2+70 (142)
i=0
and
A].=ao+b]. forj=12,---,6 (14b)
where
6-1
b.= aw’, w=e2ml7
j i
i=1

For d = 7, the permutation o is given by

1, 2, 3, 4,5, 6

3, 2, 6, 4,5, 1

Applying the above permutation to Eq. (14b), one obtains B = Wa as

b3 w2 w® wt Wi wl w? a,
b2 wo wh wd wl w? w? a,
b6 wh w®w w3 w? w® aq
b4 ) wS wl w3 w? wb wt a,
b, wh w? w2 wb w wh ag
b1 w? w2 wé w Wt wl a,
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By Theorem 1, there exists a permutation 7 of rows and columns so that the above cyclic matrix can be partitioned into
2 X 2 block matrix of 3 X 3 cyclic blocks as follows:

b3 w? wl w ws wé w3 0
b5 w!l w? w2 wb w3 W’ 0
b6 wh w? wl w3 wd w 0
= (15)
b4 w® w® w? w? wt w? 0
b2 w® w? Wi Wl wt w? 1
b, w2 wS wé w* w? w! 0
This matrix equation has the block form,
B1 C D Z1
B2 D C 22

(C+D)(Z, +Z,)+(C-D)(Z, - Z,)

(C+D)(Z, +Z,)- (C-D)(Z, - Z,)

E+F
=271 ) (16)
E-F

Since € and D are 3 X 3 cyclic matrices, it is evident that the matrices C+ D and C - D are also 3 X 3 cyclic matrices. (Note
that for a 6 X 6 cyclic matrix in Eq. (15), the powers of w in E and F in Eq. (16) are real numbers and imaginary numbers,
respectively). In Eq. (16), E is

€, -0.445, 1.247, -1.802 0
E= e, = 1.247, -1.802, -0.445 1 (17)
e, -1.802, -0.445, 1.247 0

where approximately 1/2 Re(w? + wS5) = -0.445, 1/2 Re(w! + w®) = 1.247, etc. Let a,=-1.802,a, =-0.445, 4, = 1.247
and y,= 0, y, = 1, y, = 0. Then the matrix equation defined in Eq. (17) can be obtained by computing the convolution of
the two sequences ¢, and y,. This requires using a transform over GF(q). To avoid overflow, one needs to choose ¢ =7 so
that the integer components of g, y,, lie in the interval (7 - 1)/2.
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By Ref. 7, the sequence of a,, is converted first to a sequence of integers x,, in the dynamic range 4 = 2. Since 2 is a third
root of unity, the transform over GF(7) of x,, is

X, = x, + 2" =-1+22% fork=0,1,2

Thus X, =0, X, =3, X, =1.

Similarty, the transform over GF(q) of sequence y,, is

Y = y 2" =2k fork=0,1,2

That is, Y, = 1, ¥, = 2, Y, = 4. Define £, = X, - Y, ie, £, =0, E| = 6, £, = 4. These are the only integer
multiplications needed to perform this DFT. The inverse transform of E, is

e, = 371 Z E, - 27" forn=0,1,2

or

In a similar fashion, matrix F, given in Eq (16), can also be obtalned as f, -1, f,=1°0,f, =-7. Thus, by Eq. (16)
one obtains b =121 b, -1/2,b,=(1~ l)/2 b,=(1 +l)/2 b -1/2, b —1/2 Hence ﬁnallyA =2+70, A4, =1+ 1/27,

=1/2 + 1() A4, = 1/2(3 D, A, = 1/2(3 +7), A= =1/2+70, A =1 - 1/2i. For this example, the dynamlc range of GF(7) is
1nadequate Also there is a large truncatlon error due to the course approximation used for the roots of unity. Evidently, the
DFT. in this example has an accuracy of precisely two binary digits, including the sign bit. This example, though only
illustrative, suggests that the large finite fields suggested above have more than adequate dynamic range to compute the DFT
with small truncation error.

IV. Transforms of Very Long Sequences

To compute the DFT of much longer sequences than considered in the last section, let d=d * d2 - +d , where (dl_, d)=
1 for i #j. By using the Chinese remainder theorem Ref. 18, it is shown by Winograd in Ref. 14 that the DFT matrix W can
be transformed into the direct product of W, W2, o+, W,, where W, is the matrix of a a’l.-point DFT. Assume the number of
multiplications used to perform the dl.-point DFT fori=12,--,ris m,. Then, the number of multiplications for computing
a d-point DFT is N=m, * m,---m,. To illustrate this, see Winograd’s example for computing a 12-point DFT, given in
Ref. 15. By the same procedure used in the computation of this example, the number of integer multiplications needed to
perform the transforms of longer sequences of complex numbers can be obtained by using Table 1 above and Table I in
Ref. 14. These numbers are given in Table 2. The present algorithm and conventional FFT algorithm (Ref. 19) are compared
in Table 2 by giving the number of real multiplications needed to perform these algorithms. The number of real
multiplications needed to perform a transform of a few thousand points is given in Table II of Ref. 14.
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Table 1. Complexity of hybrid DFT for real and complex data

No. of integer

No. of integer

d=gq q -1 multiplications for multiplications for
real data complex data
367 2-3.61 488 976
373 22.3.31 620 1240
733 22.3.61 1220 2440
1831 2:3.5.61 4880 9760
1861 22.3.5.31 6200 12400
2441 23.5.61 8540 17080
Table 2. Complexity of new hybrid algorithm for DFT
New Algorithm Radix-2 FFT
d Fastors ligtcatios to utipheations
complex data 2d logyd
4096 212 98,304
4476 373X 4 3 14,880
8192 213 212,992
8796 733X 4 % 3 29,280
16384 214 458,752
20888 373x 8x 7 89,280
32768 215 983,040
41048 733X 8x 7 175,680
62664 373 x 8X 7X 3 267,840
65536 216 2,097,152
123144 733X 8X 7X 3 527,040
131072 217 4,456,448
262144 218 9,437,184
268560 373X 16 X 9% § 1,740,960
524288 219 19,922,944
527760 733X 16X 9X 5 3,425,760
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